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ABSTRACT

Solving a problem of Erdés and Heilbronn, in 1994 Dias da Silva and
Hamidoune proved that if A is a set of k residues modulo a prime p,
p > 2k — 3, then the number of different elements of Z/pZ that can be
written in the form a4+ «’ where a,a’ € A, a # &', is at least 2k — 3. Here
we extend this result to arbitrary Abelian groups in which the order of
any nonzero element is at least 2k — 3.

1. Introduction

Let G # 0 denote any Abelian group. Define p(G) as the smallest positive integer
p for which there exists a nonzero element g of G with pg = 0. If no such integer
exists, we write p(G) = oo. Thus, p(G) = oo if and only if G is torsion free,
otherwise it is a prime number that equals the order of the smallest nontrivial
subgroup of G. In particular, if G is finite, then p{G) is the smallest prime divisor
of |G).

For nonempty subsets A, B C G with |A] = k and |B| = ¢, we will consider
the sets

A+B={a+blac A be B}

and
A+B={a+blac€ Abec B,a#b}.
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If G is torsion free, that is, G is an ordered Abelian group, then the elements
of A and B can be enumerated as a; < a3 < --- < ap and by < by < --- < by
such that

a1+bp <as+by < - <ap+b <ap+by<---<ap+be.

Thus we can conclude that [A + B| > k+ ¢ —1 and |A+B| > k+(—3. In
fact, |A+B| > k+ ¢ — 2, unless A = B. See [14] for details. In particular,
|A+ Al > 2k — 1 and |A+A| > 2k — 3. Moreover, it is easy to see that, except
from some particular cases, equality can only occur if A and B are both arithmetic
progressions of the same difference. Based on a compactness argument (see [14])
it follows that the same estimates are valid in any Abelian group G for which
p(G) is large enough compared to k and ¢. An effective, though exponential
admissible bound can be obtained by using the notion of Freiman-isomorphism
[12] and a rectification principle due to Bilu, Lev and Ruzsa [4]; see [14] for the
details.

According to the Cauchy—Davenport theorem [6], if p is a prime number and
p>k+(¢—1, then [A+ B| > k+ {—1 holds for any A,B C Z/pZ with
|A| = k,|B| = ¢. This result has been generalized in several ways. In particular,
the following result can be obtained easily from Kneser’s theorem [15, 19] or can
be proved directly with a combinatorial argument; see [14].

THEOREM 1: If A and B are nonempty subsets of an Abelian group G such that
p(G) > |A|+ |B| — 1, then |A+ B} > |A| + |B| — 1.

Much less is known in the case of restricted addition. In 1994 Dias da Silva
and Hamidoune [7] proved that for A C Z/pZ, p a prime,

|A+A| > min{p, 2|4| - 3},

thus settling a problem of Erdds and Heilbronn (see {11]). Later Alon, Nathanson
and Ruzsa [2, 3] applying the so-called ‘polynomial method’ gave a simpler proof
that also yields

|A+B| > min{p, |A| + |B| — 2}

if |A| # | B|. Some lower estimates on the cardinality of A+ B in arbitrary Abelian
groups were obtained recently by Lev [16, 17], and also by Hamidoune, Llad6 and
Serra [13] in the case A = B. Moreover, some more refined results in elementary
Abelian groups have been proved by Eliahou and Kervaire; see [8, 9, 10].

In this paper we prove the following extension of the Dias da Silva-Hamidoune
theorem:
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THEOREM 2: If A is a k-element subset of an Abelian group G, then
|A+A| > min{p(G), 2k - 3}.

Assume that p(G) is finite and p(G)/2 +1 < k < p(G). Let P be a subgroup
of G with |P| = p(G) and assume that P = (g). If

A={0,9,2g....,(k—1)g}.

then clearly A+A = P, indicating that the bound is tight.

We prove this theorem as follows. First of all, since we are dealing with a finite
problem, we may assume that G is finitely generated. We have already seen that
the result is valid if G is torsion free. In Section 2 we will verify Theorem 2 in
the case when G is a cyclic group of prime power order. Thus it remains to prove
that if the statement of Theorem 2 is true for two Abelian groups G! and G2,
then it is also valid for their direct sum G* @ G?. This we carry out in Sections
3-5.

2. Cyclic groups of prime power order

In this section we prove the following somewhat more general result.

THEOREM 3: Let A and B denote nonempty subsets of the group Z/qZ, where
q = p* is a power of a prime p. Then
{A+B| > min{p, |A| +|B| - 3}.

Al=k>2and |B|=£€>2. Since A’ D A
, we also may assume that £k + ¢ -3 < p.

Proof: We may clearly assume that
and B’ D B implies |A'+B’| > |A+B
Our proof will depend on the following so-called ‘polynomial lemma’.

LEMMA 4 (Alon [1]): Let F be an arbitrary field and let f = f(x1....,2) be

a polynomial in Flxy,....x]. Suppose that there is a monomial Hle xh

; such
that Zle t; equals the degree of f and whose coefficient in f is nonzero. Then, if
S1,...,Sk are subsets of F with |S;| > t;, there are s; € 1,52 € Sa,...,5; € Sk

such that f(s1,...,s%) # 0.

Like in [5], we will use this lemma in a multiplicative setting. We acknowledge
that a similar idea has also been suggested by Lev [18]. Let ¢ = €*™/9 and
consider the unique embedding ¢: G < C* of G into the multiplicative group of
the field of complex numbers with the property ¢(1) = . Write C = A+ B and
define

A={p@)]ae A}, B={p()'|be B}, C={p(c)ceC}
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Observe that for a € A and b € B,
a=b<= pla)p(b) 1 -1=0

and
a+b=c+ p(a) - plc)p(b)~! = 0.

Thus, if x € A and y € [3, then either xy — 1 = 0, or there exists a ¢ € C such
that x — cy = 0.

We wish to prove that |C| > k+ ¢~ 3. Assume that, on the contrary, ¢t = |C| =
IC| < k + ¢ — 4. Consider the polynomial P € C[z,y] defined as

P(z,y) = (zy — V(= — )"+ ] (@ - ew);
cel

then P(z,y) = 0 for every € A, y € B. Since the degree of P is clearly not

greater than k + ¢ — 2, in view of Lemma, 4, the desired contradiction comes from

the fact that the coefficient of the monomial z*¥~1y‘~! in P is different from 0.
To verify this fact, observe that writing C = {e1,¢a,...,ct}, this coefficient is

coeff p(zF~1yt=1) = (—1)6*2Q(01,c2, e L1000 11,
N e

k+¢—~4—t times

where Q(x1, 22, . .., Trye—4) is the (£ — 2)*? elementary symmetrical polynomial
in the variables x1,...,Try¢—4. In particular,

Qer,eo,..00, 1,1,...,1,1)
N e’
k+£—4—t times

k+£—4

is the sum of ( Ja ) numbers, each of which is a product of £ — 2 terms. These

terms, each being equal to either 1 or some ¢;, are all elements of ¢{G). Conse-

quently, each of the (*}°2*) summands is an element of ©(G), hence equals some

¢" root of unity. We recall the following simple lemma whose proof we include

for the sake of completeness.

LEMMA 5 ([5, Lemma 6)): Ifey,¢a,...,&m are ¢t roots of unity such that

m
g =0,

i=1

then m is divisible by p.

Proof: There exist positive integers o; with ¢; = %, Consider the polynomial
R(z) =Y~ , x; then R(e) = 0. It follows that the ¢** cyclotomic polynomial
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®,, which is irreducible in Z[z], is a divisor of R in the ring Z[z]. Consequently,
p = ®,(1) divides R(1) = m. ]

As p > k+ ¢ — 4, the binomial coefficient (*3°7*) is not divisible by p. Thus,

it follows from Lemma 5 that
Qlci,ca,. .00, 1,1,...,1,1)
(AR
k+¢—4—t times
cannot be zero. Accordingly, coeffp(xF=1y¢~1)
of Theorem 3. ]

# 0, which completes the proof

3. Transfer to direct sums

Suppose that we have already proved Theorem 2 for the Abelian groups G' and
G?. Let
G=G'®&G*>={(g,h)| g € G',h € G?},

where addition in G is defined by
(9. 1) + (¢'\h)) = (g + 4", A+ 1)
Note that p(G*%) > p(G) for i = 1,2. For a set X C G write
X' = {g € G'| there exists h € G* with (g,h) € X}.

We define X? in a similar way. An immediate consequence of this definition is
the following statement.

PROPOSITION 6: For arbitrary X,Y C G we have (X \Y)! D X!\ Y! and
XX C(X+X)PC X+ XL

We have to prove that |A+A| > min{p(G), 2k — 3} holds for every A C G with
|A| = k. This is easy to check if p(G) = 2, and we may assume that 2k —3 < p(G)
otherwise. Then

2(4% -3 < 2k - 3 < p(G) < p(GY)

fort=1,2. Write A = Ao UC, where C=C,U--- U,
Ao = {(a;,b;)| 1 <i < s}, Ci = {(ci,dij)| 1 < J < ks}

for 1 <i < tsuchthat 2 < ky <k <--- < ki, and ay,...,86,€1,...,C are
pairwise different elements of G'. Note that k = s+ k) +-- - + k;. The following
easy lemma will be used frequently throughout the proof.
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LEMMA 7: Forl<a,B<t,a# 3 we have
|Ca+Cql > 2kq — 3

and
|Ca+Cs| > ko + ks — 1.

Proof:  Since |Co+C,| = |C2+C2| and
2|CZ| - 3 =2ka — 3 < 2k - 3 < p(G) < p(G?),

the first estimate follows directly from our hypothesis on G2. On the other hand
we have

IC2|+|C2| = 1= ko + k3 — 1 < 2k — 5 < p(G) < p(G?),
and thus Theorem 1, applied to G2, immediately implies

[CoatCal =1C2 +C3 > ka+hs—1. &

Turning back to the proof of the estimate |A+A| > 2k — 3, assume first that
t = 0. In this case |A}| = s =k and

|A+A| > |ALHAL > 2k — 3

based on our assumption on the group G*.

Assume next that ¢ > 4. Consider the ¢t numbers ¢; + ¢, € G for 1 < i < ¢.
Based on the hypothesis on G we have |C'+C?!| > 2t —3 > t+1, and thus there
exist indices a # /3 different from ¢ such that ¢, + ¢z € G* differs from each
number ¢; + ¢;. Then

lCa'}‘CB{Z}'IQ'FLﬁ—lZ:;

by Lemma 7. Since m = |C! + C!| > 2t — 1 > t + 1 by Theorem 1, there is a set
I of m — t — 1 pairs (7, 4) such that the numbers

categ cite (1<i<t), cy+es ((v,0)€l)

are all different. Lemma 7 implies |C,+Cjs| > 1 for these pairs (v, d). Based on
Proposition 6, we can argue that

(A+H\(CHO)' 2 (A+A)\(CHO)! 2 (414N (CT + CY)
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and consequently
|A+A| =[(A+A4) \ (C+O)| + |C+C|
>|((A+A)\ (C+C))' | + |C+C]
>|AM+ AN - |C + CY + |C4C)
>(2(s +t) = 3) —m + |C+C],

according to our hypothesis concerning A! C G'. Based on our previous remarks
and Lemma 7, we have

t
|C+C| 2|Cat+Csl + > 1C,4Cs + Y |CiHC|

(v.6)el i=1
t—1

>34+ (m—t—1)+ Y (ki +k — 1) + (2k — 3)
=1

t
>(m—t+2)+2) ki—(t—1)—=3=(m-2t)+2(k — 5).

i=1

Consequently,
[A+A} > (25 + 2t —3 —m) + (m — 2t + 2k — 25) = 2k — 3,

as was intended to prove. This completes the proof of the generic case t > 4.
The last case we study in this section is that of = 1. As the remaining cases
- = 2 and t = 3 require some more delicate analysis, these we postpone to the
following two sections, respectively. First we note that if s = 0, then k; = k,
A=C; and
|A4+A| = |C1+C1| > 2k —3 =2k -3

by Lemma 7. Otherwise we have 3 < s+ 2 < (k+ 2) — 2. Note that in this
case (A \ C)+C = Ap+C and C+C are disjoint, since (g.h) € C+C implies
g = c1 4¢3, while g = a; + ¢; for some 1 < i < s if (g, k) € Ap+C. Moreover,
the elements (a; + ¢y, b; + dy;) are pairwise different for 1 <7 <5, 1 < j < ky,
thus we obtain the estimate
|A+A| >|A+C| = |4p+C] + |C+C|
>sk1+ 2k —3)=s(k—-5s)+2(k—5) -3
=((k+2)—(s+2))(s+2)-3>2k -3,

as was to be proved.
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4. The case t =2
If s =0, then k = ky + ko > 4. Since the numbers ¢; + ¢1, ¢1 +¢2 and ¢ + ¢2 are
pairwise distinct, we have
1A+A| 2|01+C1I + ICri-Czl + |C2+02|
>(2k; —3)+ (k1 + ke — 1)+ (2ks —3) =3k —7>2k -3
by Lemma 7. Thus we may assume that s > 1. Then the numbers a; + ¢
(1 <i<8),c1 4¢3 and ¢y + ¢ are all different, and thus
|A+A| >|A+Cq| = |Ap+C2| + |C1+Ca| + |Ca+Ca|
Zskg + (kl + k2 — 1) + (2k2 - 3)
>2s 4+ (ko —2)s+ 2(ky + ko) — 4
=(2k —4) + (ko — 2)s > 2k — 3,
if k3 > 3. Thus, in the sequel we will assume that s > 1 and ky = ko = 2. In
particular, k = s + 4.

Consider the 2s + 1 = 2k — 7 numbers (a; + ¢z, b; + d21), {(a; + c2,b; + d22)
(1 <i<s),and (co+ c2,day +da2); they are all distinct, and also differ from the
numbers (c1+ca, diy+dar), (c1+c2, dii+da2), (c14ca, dizt+dar), (c1+c2, dig+d2a).
Out of the latter four numbers at least 3 must be pairwise different. Thus we
have found 2k — 3 or 2k — 4 different elements of |A+A4| so far; denote the set of

these elements by X.
If, for some 1 < i <'s,

a;+c1 € {a1+ca,....a5 +co 01+ 2,00+ Ca}y

then (a; +c1,b; +d1;) € (A+A)\ X, and therefore |A+A| > |X|+1 > 2k—3. If
a; + ¢1 = 3 + c2, then we may replace in X the element (co + ¢2,d2; + dag) by
the two new elements (a; + ¢1, b + d11) and (a; + ¢1, b; + d12) to obtain at least
2k — 3 different elements of A+A. Since a; + ¢; = ¢; + co cannot occur, in any
other case we conclude that

{fa;+ |1 <i<s}={a;+ea]1<i<s)

This, however, is not possible, because in this case we would get A} + ¢ = A}
with ¢ = ¢3 — ¢; # 0, yielding

AL+ (p(G) = De= A+ (p(G) = 2e == AL+ 2c = A} + c = A},

that in turn implies p(G) < |4}| = s = k — 4 < 2k — 3 < p(G), a contradiction.
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Since we have considered all possibilities, the study of the case t = 2 is now
complete.

5. The case t =3

The numbers a; +¢3 (1 < i < s), ¢1+¢3, c3 +c¢3 and ¢3 + c3 are all different, and
thus

|A+A| >|A4+Cs| = [Aog+Cs| + |C14+Cs] + |Cat-Ca| + |C3+Cs]
28k3+(k1+k3—1)+(k2+k3—1)+(2k3—3)
=2(S+k1 +k2 +‘k3) — 5+S(k3 - 2) + (2k3 bt kQ - kl)
Therefore |A+A| > 2k — 3, whenever s(k3z — 2) > 2. This is indeed the case if
ks3> 3 and s > 2.

Next, if s < 1, then ky + ko + k3 > k—1, and p(G) > 2k —3 > 9. The numbers
¢1 + ¢, €1 + ¢3, ¢z + c3 are pairwise different. By Theorem 1 we have

[{c1,c2,c3} + {c1, 2, ¢33 > 5.

Consequently, there exist two indices ¢ # j such that the five numbers ¢y + ¢3,
c1 + ¢3, ¢a + ¢3, ¢; + ¢4, ¢ + ¢; are still pairwise different. Then, according to
Lemma 7,
|A+A| >|C14+Cy| + [Cr+Cs| + |C24-Cs| + |Ci4-Cy| + |C]-—i-Cj|
Z(k1+k2—1)+(k1+k3—1)+(k52+k3—1)+1+1
:2(k1+k2+k3)—1 > 2k — 3.
It only remains to handle the case k; = ko = k3 = 2, s > 2. Now we have
=546 > 8, and then p(G) > 2k -3 > 13> 2.
Assume that there is no 1 < ¢ < s such that a; + ¢c3 = ¢; + ¢3. Then the
numbers a; + ¢3 (1 <4 < s), ¢ + ¢9, ¢ + ¢3 and ¢ + ¢3 are all different, and
|A+A| >|Ao+C3] + |C1+Cy| + |C1+C3] + |Ca+Cs|
>25+3+3+3=2k-3.
Thus, we may assume that a; + ¢3 = ¢; + ¢ for some 1 < i < s. By symmetry

we may also suppose that a; +c¢2 = c; +c3 for some 1 < j <5. Were i = j, it
would follow that

c1ter—¢c3=a; =a; =c; +c3—cCa,

implying 2(c3 — ¢2) = 0, in contradiction with p{(G) > 2. Consequently, i # j.
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Note that the numbers a, +¢3 (1 < a < s, # i), c1+c2, 1 +¢3 and ca + ¢3
are still all different. If there is an index 1 < 5 < s, 3 # J, such that

ag+cg & {a1+cs,...,as +c3,01+ ¢3,¢2 + 3},

then . . .
|A+A| 2[{(ap, b3)}+Ca| + [(Ao \ {(a;, b:)})+C5]

+ ICl‘I‘Cz] + |C1+C3| + IC?+C3'
>24+2(s—-1)+3+3+3=2k-3.
Since for 1 < 3 < s, B # j,
ag +co & {a; + c3 = c1 + cg,¢1 + ¢3, 00+ c3},
in every other case we can conclude that
{ao+csjl<a<s,a#i}={apg+c2|1<3<s,B# 5}

In particular, for every a # i, ay + (c3 — ¢2) € A},
Consider now the sequence defined recursively by

To=0Q; Tpy1=2Tptcz—c2 {(n>0).

Then &y = ¢;. ¥2 = a; € A} \ {a;}, and if @, € A} \ {a;}, then 2,4, € A}
holds. It follows that there is a smallest positive integer n for which there exists
an integer 0 < m < n such that r, = 2, and in this case Tpymq1. Tmt2,..., Tn
are all different elements of A} U {¢;}. Consequently,

1<n-—-m<|A+1=5+1<k<p(G),
which contradicts the fact that
(n—m){cs—ca) =ap —Tm =0.

This completes the investigation of the case t = 3 and also the proof of Theorem
2.
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