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ABSTRACT 

Solving a problem of ErdSs and Heilbronn, in 1994 Dias da Silva and 

Hamidoune  proved tha t  if A is a set of k residues modulo a pr ime p, 

p > 2k - 3, then  the number  of different e lements  of Z / p Z  t ha t  can be 

wr i t t en  in the  form a T a  ~ where a,a ~ ~ A, a ~ a ~, is a t  least  2 k - 3 .  Here 

we ex tend  this  result  to a rb i t r a ry  Abel ian  groups in which the order of 

any nonzero e lement  is a t  least 2k - 3. 

1. I n t r o d u c t i o n  

Let G ¢ 0 denote any Abelian group. Define p(G) as the smallest positive integer 

p for which there exists a nonzero element g of G with pg = 0. If  no such integer 

exists, we write p(G) = co. Thus, p(G) = c~ if and only if G is torsion free, 

otherwise it is a prime nmnber  tha t  equals the order of the smallest nontrivial  

subgroup of G. In particular,  if G is finite, then p(G) is the smallest prime divisor 

of Ic, I. 
For nonempty  subsets A, B c_ G with IAI -- k and IBI = ~, we will consider 

the sets 

and 

A +  B = {a+b  I a e A, bE B} 

A?B = {a + bl a • A, b E B,  a :~ b}. 
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If  G is torsion free, tha t  is, G is an ordered Abelian group, then the elements  

of A and B can be enumera ted  as a t  < a2 < . . .  < ah, and bl < b2 < . - .  < be 

such tha t  

a t  + bt < a2 + bl < . . .  < aA, + bt < aA. + b2 < . ' .  < ak + be. 

Thus  we can conclude tha t  IA + BI > k + C - 1 and I A 4 B I  >_ k + e - 3. In 

fact, IA~-BI _> k + e - 2, unless A = B. See [14] for details. In par t icular ,  

]A + A] > 2k - 1 and IA~-A] > 2k - 3. Moreover,  it is easy to see tha t ,  except  

from some par t icular  cases, equali ty can only occur if A and B are bo th  ar i thmet ic  

progressions of the same difference. Based on a compactness  a rgument  (see [14]) 

it follows tha t  the same es t imates  are valid in any Abelian group G for which 

p(G) is large enough compared  to k and ~. An effective, though exponent ia l  

admissible bound  can be obtained by using the notion of Freinian-isomorphisnx 

[12] and a rectification principle due to Bilu, Lev and Ruzsa [4]; see [14] for the 

details. 

According to the Cauchy Davenpor t  theorem [6], if p is a pr ime nmnber  and 

p > k + f - 1 ,  then ] A + B ]  > k + f - 1  holds for any A , B  C_ Z / p Z w i t h  

IA[ --  k, IBI = C. This  result has been generalized in several ways. In part icular ,  

the following result can be obta ined easily from Kneser ' s  theorenl  [15, 19] or can 

be proved directly with a combinator ia l  argument ;  see [14]. 

THEOREM 1: I f  A and B are nonempty  subsets of  an Abelian group G such that 

pCG) >_ [A I + iB[ - 1, then IA + B[ > IAI + IBI - 1. 

Much less is known in the case of restr icted addition. In 1994 Dias da  Silva 

and Hamidoune  [7] proved tha t  for A C Z / p Z ,  p a prime, 

IA4-AI > min{p, 2IA [ - 3}, 

thus sett l ing a p rob lem of ErdSs and Heilbronn (see [11]). Later  Alon, Na thanson  

and Ruzsa  [2, 3] applying the so-called 'po lynomial  me thod '  gave a simpler proof  

tha t  also yields 

IA~-Z[ _> min{p, IAI + IBI-  2} 

if IAI # IBI. Some lower es t imates  on the cardinali ty of A~-B in a rb i t ra ry  Abel ian 

groups were obta ined recently by" Lev [16, 17], and also by Hamidoune,  Llad6 and 

Serra [13] in the case A = B. Moreover,  some more refined results in e lementary  

Abel ian groups have been proved by Eliahou and Kervaire; see [8, 9, 10]. 

In  this paper  we prove the following extension of the Dias da S i lva-Hamidoune  

theorem: 
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THEOREM 2: I f  A is a k-element subset of  an Abelian group G, then 

IA4AI >_ min{p(G), 2k - 3}. 

Assume tha t  p(G) is finite and p(G)/2  + 1 < k < p(G). Let P be a subgroup 

of G with [P] = p(G) and assume tha t  P = (g>. If  

,4 = { 0 , g ,  2 g , . . . ,  (k - 1 )g} ,  

then clearly AJrA = P, indicating that, the bound  is tight. 

We prove this theorem as follows. First of all, since we are dealing with a finite 

problem, we may assume tha t  G is finitely generated. We have already seen that  

the result is valid if G is torsion free. In Section 2 we will verify Theorem 2 in 

the case when G is a cyclic group of prime power order. Thus it remains to prove 

tha t  if the s ta tement  of Theorem 2 is true for two Abelian groups G 1 and G '~, 

then it, is also valid for their direct sum G 1 ¢2 G 2. This we carry out  in Sections 

3 5 .  

2. Cyclic groups of  prime power order 

In this section we prove the following somewhat  more general result. 

THEOREM 3: Let A and B denote nonempty  subsets of the group Z /qZ ,  where 

q = p~ is a power of a prilne p. Then 

IA?Ul > rain{p, IAI + IBL- 3}. 

Proof.' We may clearly assmne tha t  ]A] = k > 2 and I B] = g > 2. Since A' D A 

and B '  _D B implies ]A'~-B' I >_ IA~-BI, we also may assmne tha t  k + g - 3 < p. 

Our proof  will depend on the following so-called ~polynomial lemma' .  

LEMMA 4 (Alon [1]): Let F be an arbitrary field and let f = f ( x l  . . . .  ,xk)  be 
k t~ s u c h  a polynomial in F[Xl . . . . .  x~:]. Suppose that  there is a monomial [L=I xi 

k that ~ i = 1  ti equals the degree o f f  and whose coefficient in f is nonzero. Then, i f  

$1 . . . . .  S~ are subsets o f F  with [Sil > ti, there are sl E Sl,  s2 E $2 . . . .  ,sA. E St  

such that f ( s l , . . . ,  sk) ~ O. 

Like in [5], we will use this lemma in a nmltiplicative setting. We acknowledge 

tha t  a similar idea has also been suggested by Lev [18]. Let c = e 2Èi/q and 

consider the unique embedding ~: G ¢-~ C × of G into the multiplicative group of 

the field of complex numbers with the proper ty  ~(1) = a. Write C = A~-B and 

define 

~l = {~,9(a)l a ~ A } ,  / )  = {~(b) - l l  b C B}, O = {~2(c)l c C C}. 
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Observe tha t  for a C A and b C B,  

a = b ¢::=> p ( a ) ~ ( b )  -1  - 1 = 0 

and 

a + b = c ¢=:::v ~(a)  - ~ (c )~(b)  -1  = O. 

Thus,  if x C -4 and y E /~, then either x y  - 1 = 0, or there exists a c E C such 

tha t  x - cy = O. 

We wish to prove tha t  ]C] _> k + g - 3 .  Assume that ,  on the contrary,  t = ]C I = 

ICI _< k + ~ - 4. Consider the polynomial  P E C[x, y] defined as 

P ( x , y )  = ( x y  - 1 ) ( x  - i i ( x  _ ey);  
cEC 

then  P ( x ,  y) = 0 for every x E fi~, y E /~. Since the degree of P is clearly not  

greater  than  k + g - 2, in view of L e m m a  4, the desired contradict ion comes f rom 

the fact tha t  the coefficient of the monomia l  x k - l y  e-1 in P is different f rom 0. 

To verify this fact, observe tha t  writ ing C = {cl, c2 . . . . .  c t} ,  this coefficient is 

c o e f f p ( x k - l y  e - l )  = ( - 1 ) e - 2 Q ( c l , e 2 , . . .  ,c t ,  ,1' 1 , . . . ,  1, 1) ,  

k+£-4~-t times 

where Q ( x l ,  x > . . . ,  Xk+e-4) is the (2 - 2) nd e lementary  symmet r ica l  polynomial  

in the variables x l , . . . ,  xk+e-4. In part icular ,  

O(Cl,C2 . . . . .  ct, ,1'1 . . . .  , 1 , 1 )  

k+£--4~-t times 

is the sum of [k+g-4~ numbers ,  each of which is a product  of g - 2 terms.  These \ 6 - 2 ]  

terms,  each being equal to ei ther 1 or some ci, are all e lements  of  ~ (G) .  Conse- 

quently, each of the (k+_e~4) s u m m a n d s  is an element of ~o(G), hence equals some 

qth root  of unity. We recall the following simple l emma  whose proof  we include 

for the sake of completeness.  

LEMMA 5 ([5, L e m m a  6]): I re1 ,  ~2 . . . .  ,¢m are  qth roots  o f  un i t y  such tha t  

E Ci ---- O, 
i=1 

then  m is divisible by  p. 

Proof:  There  exist posit ive integers c~i with ci -- c ~ .  Consider the polynomia l  

R ( x )  = ~-~im__ 1 x ~ ;  then  R(c)  = 0. I t  follows tha t  the qth cyclotomic polynomiM 
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(I)q, which is irreducible in Z[x], is a divisor of R in the ring Z[x]. Consequently, 

p = ( I ) q ( 1 )  divides R(1) -- m. II 

As p > k + ~ - 4, the binomial coefficient [k+t-4) is not  divisible by p. Thus, ~ e - 2 J  
it follows from Lemma 5 that. 

cannot  be zero. 

of Theorem 3. 

Q ( c l , c 2 , . . . , e t ,  , 1 ' 1 ' " " 1 ' 1 )  

k+e-4~-t times 

Accordingly, c o e f f p ( x k - l y  e - l )  ¢ 0, which completes the proof  
| 

3. T r a n s f e r  t o  d i r e c t  s u m s  

Suppose tha t  we have already proved Theorem 2 for the Abelian groups G 1 and 

G 2. Let 

G = C '  ~ G  ~ = {(g,h)l  g e V ' , h  • aS},  

where addit ion in G is defined by 

+ l ( g , h ) + ( g ' , h ' ) = ( g  g , h + h ' ) .  

Note tha t  p(G ~) >_ p(G) for i = 1, 2. For a set X C G write 

X t = { g • G l l  there e x i s t s h • G  2 with (g, h) • X}.  

We define X 2 in a similar way. All immediate  consequence of this definition is 

the following statement.  

PROPOSITION 6: For arbitrary X , Y  C_ G we have ( X  \ y ) l  ~ X 1 \ y1  and 
X1--~X 1 C ( X ~ - X )  1 C_ X 1 + X 1. 

We have to prove tha t  IA~-A[ >_ min{p(G),  2k - 3} holds for every A C_ G with 

]A I = k. This is easy to check i fp(G) = 2, and we may assume tha t  2 k - 3  < p(G) 
otherwise. Then 

21Ai[ - 3 <_ 2k - :3 <_ p(G) <_ p(G i) 

for i = 1,2. Write A = A0 U C, where C = C1 t3 .. • U Ct, 

A0 = {(ai, bi)l 1 < i < s}, C.i = {(ci,dij)l  1 <_j <_ ki} 

for 1 < i < t such tha t  2 <_ ks <_ k2 <_ " "  <_ kt, and a b . . . , a s ,  cl . . . .  ,ct are 

pairwise different elements of G 1. Note tha t  k = s + kt + . . .  + kt. The following 

easy lemma will be used frequently throughout  the proof. 
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LEMMA 7: For 1 <_ (~,/3 <_ t, a' ~ /3 we have 

Ic~+c~l > 2ka - 3 

~ d  

Isr. J. Math. 

IC~l + l e V I -  1 : ~,a + k/3 - 1 _< 2k - 5 < p(G) <_ p(G2), 

and thus Theorem 1, applied to G 2, immediately implies 

[C~-i-Cj3[ = lC~ + C~t >_ ka + k~ - l. | 

Turning back to the proof  of the estimate tASrAI >_ 2k - 3, assmne first tha t  

t = 0 .  In this c a s e l A 0 1 ] = s = k a n d  

Id-~AI >_ IA~-~A~I >_ 2k - 3 

based on our assumption on the group G 1. 

Assume next tha t  t _> 4. Consider the t numbers  c~ + ct C G 1 for 1 < i < t. 

Based on the hypothesis on G 1 we have ICI+Cll > 2 t -  3 _> t + 1, and thus there 

exist indices c~ ¢ /3 different from t such tha t  ca + ct~ E G 1 differs from each 

number  ci + ct. Then 

ICed-clef >_ k~ + k~ - I >_ 3 

by Lemnm 7. Since m -- IC 1 + Cl l  _> 2t - 1 > t + 1 by Theorem 1, there is a set 

I of m - t - 1 pairs (% 5) such tha t  the numbers  

ca+ci~, c i+c t  ( l < i < t ) ,  c ~ + c ~  ((7,5)  E I )  

are all different. Lemma 7 implies IC~-i-C~I _> 1 for these pairs (%5).  Based on 

Proposi t ion 6, we (:an argue tha t  

( (A+A) \ (C~-C)) ~ D_ ( A 4 A )  ~ \ ( C 4 C )  ~ D_ ( A 1 4 A  1) \ (C 1 --}- C l) 

ICa46/31 ~ ~,~ + ~,/~ - 1. 

Proof: Since ICo-~Cal = IC~-~C2l and 

2[6~1 - 3 = 2~a - 3 ~ 2k - 3 ~ p ( a )  ~ p ( a 2 ) ,  

the first est imate follows directly from our hypothesis on G 2. On the other hand  

we have 
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and consequent ly  

]A~-A I : I ( A q - A )  \ ( C 4 C ) [  + 164ci 
_>]((Aq-A) \ (c4c))'1 + IC4-CI 
>_IA~-A~[- [C ~ + C ~ [  + ]C~-Cl 

_ > ( 2 ( s  + t )  - 3 )  - m + [C-]-C I, 

according to our  hypothes is  concerning A 1 C g 1. Based  on our  previous  r emarks  

and L e m m a  7, we have 

t 

IC4-ci >1c 4-o 31 + IC .-i-C l + IC,4-O l 
(%6)EI i = l  

t--1 

_>3 + (m - t -  1) + Z ( k , i  + kt - 1) + (2kt - 3) 
i----1 

t 

>_(m- t + 2) + 2 Z k ~  - ( t -  1) - 3 = ( m -  2t) + 2 ( k -  s). 
i= t  

Consequently,  

tA-i-At > (2s + 2t - :3 - m) + (m - 2t + 2k - 2s) = 2k - 3, 

as was in tended to prove. This  completes  the  p roof  of the  generic case t > 4. 

The  last  case we s tudy  in this  sect ion is t ha t  of t = 1. As the  remain ing  cases 

t = 2 and t = 3 require  some more del icate  analysis ,  these we pos tpone  to  the  

following two sections, respectively.  F i r s t  we note  t ha t  if s = 0, then  kl = k, 

A = C1 and 

]A+A] = IC1~-C1] >_ 2kl - 3 = 2 k -  3 

by L e m m a  7. Otherwise  we have 3 _< s + 2  _< ( k + 2 ) - 2 .  Note  t ha t  in this  

case (A \ C)4-C = Ao4-C and C~-C are  disjoint ,  since (g, h) C C~-C impl ies  

g = cl + c l ,  while g = ai  + cl for some 1 < i < s if (g,h) E AoJcC. Moreover,  

the  e lements  (ai + cl, bi + dlj) are pairwise different for 1 < i < s, 1 _< j < kl ,  

thus  we ob ta in  the  e s t ima te  

]d~-dl >[d4C[ = [Ao-[-Cl + IV+C[ 

_>ski + (2kl - 3) = s ( k -  s) + 2 ( k -  s) - 3 

= ( ( k  + 2) - (s + 2 ) ) ( s +  2 ) -  3 _> 2 k -  3, 

as was to be proved. 
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4. T h e  c a s e  t = 2 

If  s = 0, then  k = kl + k2 _> 4. Since the  numbers  Cl + cl ,  Cl + c2 and c2 + c2 are 

pairwise  dis t inct ,  we have 

[A+A[ >_lC,4Cal + [C1-[-C2[ @ ]C2-[-C2l 

_>(2kl - 3) + (kl + k2 - 1) + ( 2 k e -  3) = 3 k -  7 > 2 k -  3 

by  L e m m a  7. Thus we may  assume tha t  s _> 1. Then  the numbers  ai + c2 

(1 < i < s),  Cl + c2 and c2 + c2 are all different, and  thus 

[A-[-AI >_[A-i-C21 = [Ao4C2I + [C~-Ce[ + [Ce4C2[ 

>_sk2 + (kl  + k2 - 1) + (2k2 - 3) 

_>2s + (k2 - 2 ) s +  2 ( k 1 +  k2) - 4 

= ( 2 k -  4) + ( k 2 -  2)s _> 2 k -  3, 

if k2 _> 3. Thus,  in the  sequel we will assume tha t  s _> 1 and kl = k2 = 2. In  

pa r t i cu la r ,  k = s + 4. 

Cons ider  the  2s + 1 --  2k - 7 numbers  (ai + c2, bi + d21), (ai + c2, bi + d22) 

(1 < i < s), and  (c2 + c2, d21 + d22); they  are all  d is t inct ,  and  also differ from the 

numbers  (c1+c2, d u + d 2 1 ) ,  (c1+c2, d11+d22), (O+c2 ,  d12+d21), (O+c2 ,  d12+d22). 
Out  of the  l a t t e r  four numbers  a t  least  3 must  be pairwise different. Thus  we 

have found 2k - 3 or 2k - 4 different e lements  of [AJrA[ so far; denote  the  set of 

these e lements  by X.  

If, for some 1 < i < s, 

ai  + cl ¢ {a l  + c2 . . . . .  a.~ + c2, cl + c2, c2 + c2}, 

then  (ai + c1, bi + du) E (A+A) \ X ,  and therefore [A4-A[ >_ IX[ + 1 _> 2k - 3. I f  

ai + cl = c2 + c2, then  we m a y  replace in X the e lement  (c2 + c2, d21 + d22) by  

the two new elements  (ai + Cl, bi + d11) and (ai + Cl, bi + d12) to ob ta in  a t  least  

2k - 3 different e lements  of A+A. Since ai + cl = cl + c2 cannot  occur,  in any 

o ther  case we conclude t ha t  

+ cl l  1 < i < s }  = + c21 1 < i < 8}.  

This,  however, is not  possible,  because  in this  case we would get A01 + c = A 1 

wi th  c = c2 - Cl ¢ 0, y ie lding 

A~ + (p(G) - 1)c = d~ + (p(G) - 2)c . . . . .  A01 + 2c = d~ + c = A~, 

t ha t  in tu rn  implies p(G) < [Aoll = s = k - 4 < 2k - 3 < p(G) ,  a cont radic t ion .  
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Since we have considered all possibi l i t ies ,  the  s tudy  of the  case t = 2 is now 

complete .  

5. T h e  c a s e  t - -  3 

The  numbers  ai  + c3 (1 < i < s), cl + c3, c2 + c3 and c3 + c3 are all different, and  

thus 

[A4-A I >_IA4-Ca[ = [Ao+C3[ + ICt4C3[ 4- [C~4C31 4- IC34C31 

>_sk3 + (kl  + k3 - 1) + (k2 + k3 - 1) + (2k3 - 3) 

= 2 ( s  + kl + k2 + k3) - 5 + s(k3 - 2) + (2k3 - k2 - k l ) .  

Therefore  IA+AI > 2k - 3, whenever  s(k3 - 2) >_ 2. This  is indeed the case if 

k3 >_ 3 and s > 2. 

Next ,  if s _< 1, then  kl 4- k2 + k3 > k - 1, and  p(G) > 2k - 3 _> 9. The  numbers  

cl + c2, ci  + c3, c2 + c3 are  pairwise  different. By T he o re m 1 we have 

I{Cl,C2,ca} + {c,,c2,c3}1 > 5. 

Consequently,  there  exist  two indices i ¢ j such t ha t  the  five numbers  cl 4- c2, 

Cl 4- c3, c2 4- c3, ci 4- ci, cj 4- cj are st i l l  pai rwise  different. Then,  according to 

L e m m a  7, 

]A-i-AI + IC,+C l + IC +C l + IC 4-c 1 + ICj4-C¢l 
_>(kl + k2 - 1) + (kl + k3 - 1) + (k2 + k 3 -  1) + 1 +  1 

= 2 ( k l + k . ~ + k a ) - l > 2 k - 3 .  

I t  only remains  to handle  the  case kl = k2 = k3 = 2, s > 2. Now we have 

k = s + 6  > 8, and  then  p(G) _> 2 k -  3_> 13 > 2. 

Assume tha t  there  is no 1 _< i <_ s such t ha t  a i 4 - c a  = c 1 + c 2 .  Then  the  

mnnbers  ai + ca (1 < i < s), cl + c2, cl + c3 and  c2 + ca are all different,  and  

IA4AI >lAo-i-Cal + IC,-i-c21 + IC,+C31 + IC24-Csl 
> 2 s 4 - 3 4 - 3  + 3  = 2 k -  3. 

Thus, we may  assume tha t  a~ + c3 = cl + c2 for some 1 < i < s. By s y m m e t r y  

we may  also suppose  that. aj + c2 = cl + c3 for some 1 _< j _< s. Were i = j ,  it  

would follow tha t  

cl 4 -c2- -c3  = a.i = aj = c l  4- ca--c2 ,  

imply ing  2(c3 -- c2) = O, in con t rad ic t ion  wi th  p(G) > 2. Consequently,  i ~ j .  
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Note tha t  the numbers  % + c3 (1 < c~ < s, a ¢ i), cl + c2, cl + c3 and c2 + c3 

are still all different. If  there is an index 1 < / 3  _< s , /3 ¢ j ,  such tha t  

az  + c2 ~ {a l  + c3 . . . .  , as + c3, cl + c3, c2 + c3}, 

then  
[A+A I >[{(a/~, b,z)}4Ce [ + [(A0 \ {(a~, b~)})4Ca[ 

+ IC,4-C~l + I C 1 4 C 3 1  + IC~4-c~1 

_>2 + 2 ( s -  1) + 3 + 3 + 3  = 2 k - 3 .  

Since for 1 _</3 < s,/3 ¢ j ,  

a~ + c2 ~ {ai + c3 = c1 + C2, Cl + C3, C2 + c3}, 

in every other  ease we can conclude tha t  

{ao + c a l  1 < ct < s , a  ¢ i} = {a~+c2 l  1 <_/3 <_ s , / 3 ¢ j } .  

Ill par t icular ,  for every ct ¢ i, a~ + (c3 -- c2) E A 1. 

Consider now the sequence defined recursively by 

Xo = ai, Xn.4.1 = X,~ + C 3 - -  C 2 ('//. > 0). 

Then  x ,  = c'1, .v2 = aj • d~ \ {ai}, and if x ,  • A01 \ {ai}, then x,7+1 e A01 

holds. It. follows that. there is a smallest  posit ive integer n for which there exists 

an integer 0 < m < n such tha t  xn = :r,,, and in this case Xm+l,xm+2 . . . . .  :r ,  

are all different elements of A~ U {ci}. Consequently,  

1 <_ n -  m < lASt + 1 = s +  1 < k < p(G) ,  

which contradicts  the fact tha t  

( n  - m ) ( c 3  - c2)  = x ,  - x , ,  = 0. 

This completes  the investigation of the case t = 3 and also the proof  of Theorem 
. 
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